Nonuniversality and strongly interacting two-level systems in glasses at low temperatures

7Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent experimental results showing atypical nonlinear absorption and marked deviations from well known universality in the low temperature acoustic and dielectric losses in amorphous solids prove the need for improving the understanding of the nature of two-level systems (TLSs) in these materials. Here we suggest the study of TLSs focused on their properties which are nonuniversal. Our theoretical analysis shows that the standard tunneling model and the recently suggested two-TLS model provide markedly different predictions for the experimental outcome of these studies. Our results may be directly tested in disordered lattices, e.g KBr:CN, where there is ample theoretical support for the validity of the two-TLS model, as well as in amorphous solids. Verification of our results in the latter will significantly enhance understanding of the nature of TLSs in amorphous solids, and the ability to manipulate them and reduce their destructive effect in various cutting edge applications including superconducting qubits.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Schechter, M., Nalbach, P., & Burin, A. L. (2018). Nonuniversality and strongly interacting two-level systems in glasses at low temperatures. New Journal of Physics, 20(6). https://doi.org/10.1088/1367-2630/aac930

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

56%

Professor / Associate Prof. 2

22%

Researcher 2

22%

Readers' Discipline

Tooltip

Physics and Astronomy 11

92%

Materials Science 1

8%

Save time finding and organizing research with Mendeley

Sign up for free