On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands

20Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

Cite

CITATION STYLE

APA

Ho, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., & Harvey, J. W. (2018). On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands. Journal of Geophysical Research: Biogeosciences, 123(1), 178–192. https://doi.org/10.1002/2017JG004299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free