Background. Dehydrocostus lactone (DL), one of the main active constituents in Aucklandia lappa Decne. (Muxiang), reported to have anti-inflammatory, antiulcer, and immunomodulatory properties. However, the effect of DL on ulcerative colitis (UC) has not been reported. To analyze the anti-inflammatory potential role of DL in UC, we provide a mechanism for the pharmacological action of DL. Methods. The experimental model of UC was induced by using oral administration of 2% dextran sulfate sodium (DSS) with drinking water in BALB/c mice. Mesalazine (Mes, 0.52 g/kg/d), DL-high doses (DL-H, 20 mg/kg/d), DL-middle doses (DL-M, 15 mg/kg/d), DL-low doses (DL-L, 10 mg/kg/d) were gavaged once a day from day 4 to day 17. Disease activity index (DAI) was calculated daily. On day 18, mice were rapidly dissected and the colorectal tissues were used to detect the levels of UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), and colorectal mucosal barrier-related regulatory factors (MUC2, XBP1s, and α-defensins) by ELISA or qRT-PCR. Results. DL reduced the colorectal inflammation histological assessment, decreased UC-related inflammatory cytokines (TNF-α, IL-1β, MCP-1, MPO, SOD, IL-6, IL-17, and IL-23), downregulated IL-6/STAT3 inflammatory signaling pathway (iNOS, COX2, IL-6, GP130, L-17, and IL-23), repaired the key colorectal mucosal barrier protein-MUC2, and inhibited the downstream pathway (XBP1s and α-defensin). Conclusions. DL possessed the potential of anti-inflammatory effect to treated colitis. The protective mechanism of DL may involve in reducing inflammation and improving colorectal barrier function via downregulating the IL-6/STAT3 signaling.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zhou, Q., Zhang, W. X., He, Z. Q., Wu, B. S., Shen, Z. F., Shang, H. T., … Han, S. T. (2020). The Possible Anti-Inflammatory Effect of Dehydrocostus Lactone on DSS-Induced Colitis in Mice. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/5659738