Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin

58Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Acute kidney injury (AKI) is emerging as a worldwide public health problem. Recent studies have focused on the possibility of using human adult renal stem/progenitor cells (ARPCs) to improve the repair of AKI. Here we studied the influence of ARPCs on the healing of cisplatin-injured renal proximal tubular epithelial cells. Tubular, but not glomerular, ARPCs provided a protective effect promoting proliferation of surviving tubular cells and inhibiting cisplatin-induced apoptosis. The recovery effect was specific to tubular ARPCs, occurred only after damage sensing, and was completely cancelled by TLR2 blockade on tubular ARPCs. Moreover, tubular, but not glomerular, ARPCs were resistant to the apoptotic effect of cisplatin. Tubular ARPCs operate mainly through the engagement of TLR2, the secretion of inhibin-A protein, and microvesicle-shuttled decorin, inhibin-A, and cyclin D1 mRNAs. These factors worked synergistically and were essential to the repair process. The involvement of tubular ARPC-secreted inhibin-A and decorin mRNA in the pathophysiology of AKI was also confirmed in transplant patients affected by delayed graft function. Hence, identification of this TLR2-driven recovery mechanism may shed light on new therapeutic strategies to promote the recovery capacity of the kidney in acute tubular damage. Use of these components, derived from ARPCs, avoids injecting stem cells. © 2012 International Society of Nephrology.

Cite

CITATION STYLE

APA

Sallustio, F., Costantino, V., Cox, S. N., Loverre, A., Divella, C., Rizzi, M., & Schena, F. P. (2013). Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney International, 83(3), 392–403. https://doi.org/10.1038/ki.2012.413

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free