Acoustic Denoising Using Artificial Intelligence for Wood-Boring Pests Semanotus bifasciatus Larvae Early Monitoring

8Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Acoustic detection technology is a new method for early monitoring of wood-boring pests, and the effective denoising methods are the premise of acoustic detection in forests. This paper used sensors to record Semanotus bifasciatus larval feeding sounds and various environmental noises, and two kinds of sounds were mixed to obtain the noisy feeding sounds with controllable noise intensity. Then, the time domain denoising models and frequency domain denoising models were designed, and the denoising effects were compared using the metrics of a signal-to-noise ratio (SNR), a segment signal-noise ratio (SegSNR), and log spectral distance (LSD). In the experiments, the average SNR increment could achieve 17.53 dB and 11.10 dB using the in the test data using the time domain features and frequency domain features, respectively. The average SegSNR increment achieved 18.59 dB and 12.04 dB, respectively, and the average LSD between pure feeding sounds and denoised feeding sounds were 0.85 dB and 0.84 dB, respectively. The experimental results demonstrated that the denoising models based on artificial intelligence were effective methods for S. bifasciatus larval feeding sounds, and the overall denoising effect was more significant, especially at low SNRs. In view of that, the denoising models using time domain features were more suitable for the forest area and quarantine environment with complex noise types and large noise interference.

Cite

CITATION STYLE

APA

Liu, X., Zhang, H., Jiang, Q., Ren, L., Chen, Z., Luo, Y., & Li, J. (2022). Acoustic Denoising Using Artificial Intelligence for Wood-Boring Pests Semanotus bifasciatus Larvae Early Monitoring. Sensors, 22(10). https://doi.org/10.3390/s22103861

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free