Short- and long-term effects of brain death on post-transplant graft function in a rodent model

14Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

OBJECTIVES: Heart transplantation has become the most effective treatment for end-stage heart failure. Donors after brain death (BD) are currently the only reliable source for cardiac transplants. However, haemodynamic instability and cardiac dysfunction have been demonstrated in brain-dead donors and this could therefore also affect post-transplant graft function. We studied the effects of BD on cardiac function and its short-term (1 h) or long-term (5 h) impacts on graft function. METHODS: In Lewis rats, BD was induced by inflation of a subdurally placed balloon catheter (n = 7). Sham-operated rats served as controls (n = 9). We continuously assessed cardiac function by left ventricular (LV) pressure-volume analysis. Then, 1 or 5 h after BD or sham operation, hearts were perfused with a cold preservation solution (Custodiol), then explanted, stored at 4°C in Custodiol and heterotopically transplanted.We evaluated graft function 1.5 h after transplantation. RESULTS: BD was associated with decreased left ventricular contractility (ejection fraction: 37 ± 6 vs 57 ± 5%; maximum rate of rise of LV pressure dP/dtmax: 4770 ± 197 vs 7604 ± 348 mmHg/s; dP/dtmax-end-diastolic volume: 60 ± 7 vs 74 ± 2 mmHg/s; slope Emax of the endsystolic pressure-volume relationship: 2.4 ± 0.1 vs 4.4 ± 0.3 mmHg/μl; preload recruitable stroke work: 47 ± 9 vs 78 ± 3 mmHg; P <0.05) and relaxation (maximum rate of fall of left ventricular pressure dP/dtmin: -6638 ± 722 vs -11 285 ± 539 mmHg/s; time constant of left ventricular pressure decay Tau: 12.6 ± 0.7 vs 10.5 ± 0.4 ms; end-diastolic pressure-volume relationship: 0.22 ± 0.05 vs 0.09 ± 0.03 mmHg/μl, P <0.05) 45 min after its initiation and for the rest of 5 h compared with controls. Moreover, after transplantation, graft systolic and diastolic functions were impaired in the 5-h brain-dead group, while they were identical in the 1-h brain-dead group compared with the corresponding controls. CONCLUSIONS: We established a well-characterized in vivo rat model to examine the influence of BD on cardiac function using a miniaturized technology for pressure-volume analysis. These results demonstrate that impaired donor cardiac function after short-term BD is reversible after transplantation and long-term BD renders hearts more susceptible to ischaemia/reperfusion injury.

Cite

CITATION STYLE

APA

Li, S., Korkmaz, S., Loganathan, S., Radovits, T., Hegedus, P., Karck, M., & Szabó, G. (2015). Short- and long-term effects of brain death on post-transplant graft function in a rodent model. Interactive Cardiovascular and Thoracic Surgery, 20(3), 379–386. https://doi.org/10.1093/icvts/ivu403

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free