Development of antimicrobial gelatin films with boron derivatives

12Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging films from gelatin. Boric acid, disodium octaborate tetrahydrate, and sodium pentaborate were incorporated as the antimicrobial agents. Films containing boric acid and its salts showed antibacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa, as well as antifungal and anticandidal effects against Aspergillus niger and Candida albicans. The mechanical strength of the films was mostly enhanced by the addition of boron derivatives. The rheological measurements and Fourier-transform infrared spectroscopy results suggest that boron derivatives did not interfere with the network formation during gelling. The morphology of boron-added antimicrobial films was found to be similar to the morphology of the control. In conclusion, the newly developed gelatin films containing 10% or 15% disodium octaborate (g/g gelatin) might be good candidates for biodegradable antimicrobial packaging materials.

Cite

CITATION STYLE

APA

Argin, S., Gülerim, M., & Şahin, F. (2019). Development of antimicrobial gelatin films with boron derivatives. Turkish Journal of Biology, 43(1), 47–57. https://doi.org/10.3906/biy-1807-181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free