There is increasing evidence that aggregation of α-synuclein contributes to the functional and structural deterioration in the CNS of Parkinson's disease patients and transgenic animal models. α-Synuclein binds to various cellular proteins and aggregated α-synuclein species may affect their physiological function. In the present study, we used protein arrays spotted with 178 active human kinases for a large-scale analysis of the effects of recombinant α-synuclein on kinase activities. Incubation with globular α-synuclein oligomers significantly inhibited autophosphorylation of p21-activated kinase (PAK4) compared to treatment with monomeric α-synuclein or β-synuclein. A concentration-dependent inhibition was also observed in a solution-based kinase assay. To show in vivo relevance, we analyzed brainstem protein extracts from α-synuclein (A30P) transgenic mice where accumulation of α-synuclein oligomers has been demonstrated. By immunoblotting using a phospho-specific antibody, we detected a significant decline in phosphorylation of LIM kinase 1, a physiological substrate for PAK4. Suppression of PAK activity by amyloid-β oligomers has been reported in Alzheimer's disease. Thus, PAKs may represent a target for various neurotoxic protein oligomers, and signaling deficits may contribute to the behavioral defects in chronic neurodegenerative diseases. © 2007 The Authors.
CITATION STYLE
Danzer, K. M., Schnack, C., Sutcliffe, A., Hengerer, B., & Gillardon, F. (2007). Functional protein kinase arrays reveal inhibition of p-21-activated kinase 4 by α-synuclein oligomers. Journal of Neurochemistry, 103(6), 2401–2407. https://doi.org/10.1111/j.1471-4159.2007.04933.x
Mendeley helps you to discover research relevant for your work.