To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. Copyright © 2007 S. Karger AG.
CITATION STYLE
Tong, L., & Thompson, E. (2007). Multilocus lod scores in large pedigrees: Combination of exact and approximate calculations. Human Heredity, 65(3), 142–153. https://doi.org/10.1159/000109731
Mendeley helps you to discover research relevant for your work.