Trans-10, cis-12 CLA increases adipocyte lipolysis and alters lipid droplet-associated proteins: Role of mTOR and ERK signaling

76Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Lipid droplet-associated proteins play an important role in adipocyte triglyceride (TG) metabolism. Here, we show that trans-10,cis-12 conjugated linoleic acid (CLA), but not cis-9,trans-11 CLA, increased lipolysis and altered human adipocyte lipid droplet morphology. Before this change in morphology, there was a rapid trans-10,cis-12 CLA-induced increase in the accumulation of perilipin A in the cytosol, followed by the disappearance of perilipin A protein. In contrast, protein levels of adipose differentiation-related protein (ADRP) were increased in cultures treated with trans-10,cis-12 CLA. Immunostaining revealed that ADRP localized to the surface of small lipid droplets, displacing perilipin. Intriguingly, trans-10,cis-12 CLA increased ADRP protein expression to a much greater extent than ADRP mRNA without affecting stability, suggesting translational control of ADRP. To this end, we found that trans-10,cis-12 CLA increased activation of the mammalian target of rapamycin/p70 S6 ribosomal protein kinase/S6 ribosomal protein (mTOR/p70S6K/S6) pathway. Collectively, these data demonstrate that the trans-10,cis-12 CLA-mediated reduction of human adipocyte TG content is associated with the differential localization and expression of lipid droplet-associated proteins. This process involves both the translational control of ADRP through the activation of mTOR/p70S6K/S6 signaling and transcriptional control of perilipin A. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Chung, S., Brown, J. M., Sandberg, M. B., & McIntosh, M. (2005). Trans-10, cis-12 CLA increases adipocyte lipolysis and alters lipid droplet-associated proteins: Role of mTOR and ERK signaling. Journal of Lipid Research, 46(5), 885–895. https://doi.org/10.1194/jlr.M400476-JLR200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free