The transposable elements (TE) have been widely applied as physical chromosome markers. However, in Loricariidae there are few physical mapping analyses of these elements. Considering the importance of transposable elements for chromosomal evolution and genome organization, this study conducted the physical chromosome mapping of retroelements (RTEs) Rex1, Rex3 and Rex6 in seven species of the genus Harttia and four species of the genus Hypostomus, aiming to better understand the organization and dynamics of genomes of Loricariidae species. The results showed an intense accumulation of RTEs Rex1, Rex3 and Rex6 and dispersed distribution in heterochromatic and euchromatic regions in the genomes of the species studied here. The presence of retroelements in some chromosomal regions suggests their participation in various chromosomal rearrangements. In addition, the intense accumulation of three retroelements in all species of Harttia and Hypostomus, especially in euchromatic regions, can indicate the participation of these elements in the diversification and evolution of these species through the molecular domestication by genomes of hosts, with these sequences being a co-option for new functions.
CITATION STYLE
Traldi, J. B., Lui, R. L., Martinez, J. de F., Vicari, M. R., Nogaroto, V., Filho, O. M., & Blanco, D. R. (2019). Chromosomal distribution of the retroelements Rex1, Rex3 and Rex6 in species of the genus Harttia and Hypostomus (Siluriformes: Loricariidae). Neotropical Ichthyology, 17(2). https://doi.org/10.1590/1982-0224-20190010
Mendeley helps you to discover research relevant for your work.