In the mammalian brain, glutamate and γ-aminobutyric acid are considered major excitatory and inhibitory neurotransmitters, respectively. However, we have found evidence that glutamate can also act as a postsynaptic inhibitory neurotransmitter in layer 4 of the neocortex. Using whole-cell recordings from layer 4 neurons in slice preparations from the mouse visual, auditory, and somatosensory cortices, we found that metabotropic glutamate receptor (mGluR) agonists (ACPD, APDC, and DCG IV) elicit a robust, long-lasting hyperpolarization that is abolished by the group II mGluR antagonist, MCCG. This response largely involves a K+ conductance mediated by G-protein activity and GIRK channels. Furthermore, electrical and photostimulation of the intracortical inputs to layer 4 elicits a similar hyperpolarization that is blocked by group II mGluR antagonists. This novel inhibition mediated by group II mGluRs may be an unappreciated mechanism for refining cortical receptive fields in layer 4 and may enable synaptic gain control during periods of high activity.
CITATION STYLE
Lee, C. C., & Sherman, S. M. (2009). Glutamatergic inhibition in sensory neocortex. Cerebral Cortex, 19(10), 2281–2289. https://doi.org/10.1093/cercor/bhn246
Mendeley helps you to discover research relevant for your work.