—The concept of privacy is expressed as release of information in a controlled way. Privacy could also be defined as privacy decides what type of personal information should be released and which group or person can access and use it. Privacy Preserving Data Publishing (PPDP) is a way to allow one to share anonymous data to ensure protection against identity disclosure of an individual. Data anonymization is a technique for PPDP, which makes sure the published data, is practically useful for processing (mining) while preserving individuals sensitive information. Most works reported in literature on privacy preserving data pub-lishing for classification task handle numerical data. However, most real life data contains both numerical and non-numerical data. Another shortcoming is that use of distributed model called Secure Multiparty Computation (SMC). For this research, a centralized model is used for independent data publication by a single data owner. The key challenge for PPDP is to ensure privacy as well as to keep the data usable for research. Differential privacy is a technique that ensures the highest level of privacy for a record owner while providing actual information of the data set. The aim of this research is to develop a framework that satisfies differential privacy standards and to ensure maximum data usability for a classification tasks such as patient data classification in terms of blood pressure.
CITATION STYLE
N, A., & Obimbo, C. (2014). Privacy Preserving Data Publishing: A Classification Perspective. International Journal of Advanced Computer Science and Applications, 5(9). https://doi.org/10.14569/ijacsa.2014.050919
Mendeley helps you to discover research relevant for your work.