Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration

36Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Shenling Baizhu San (SBS) is a well-known and classical Chinese medicine formula. It has been used for treatment of gastrointestinal disorders for about nine hundred years. Recent reports showed that it was effective in curing colitis and ameliorating the major manifestations of postoperational colorectal cancer (CRC). This study was to evaluate the effects of SBS on azoxymethane (AOM) and dextran sodium sulfate (DSS) induced colitis associated CRC (caCRC) and to analyze the underlying mechanism of SBS in preventing CRC. Methods: The colon tissue of mice in different group was determined by immunohistochemistry and western blot. TGF-β1 in serum was measured by ELISA. Myeloid-derived suppressor cells (MDSCs) were identified by flow cytometry and immunohistochemistry. Results: The formed neoplasms phenotypically resembled human caCRC with upregulated β-catenin, p53 and proliferating cell nuclear antigen (PCNA). SBS treatment reduced the death rate of mice and decreased the incidence and multiplicity of colonic neoplasms. SBS decreased the number of MDSCs and the level of transforming growth factor β1 (TGF-β1). SBS alleviated epithelial mesenchymal transition (EMT) through downregulating N-cadherin (N-cad), Vimentin, Fibronectin, Snail, and upregulating E-cadherin (E-cad). It reduced the activation of Wnt5a and EMT induced by TGF-β1. Conclusions: SBS reduced the death rate through decreasing the incidence and multiplicity of colonic tumors. SBS lowered MDSCs infiltration and inhibited TGF-β1 induced EMT to exert its anti-caCRC effects.

Cite

CITATION STYLE

APA

Lin, X., Xu, W., Shao, M., Fan, Q., Wen, G., Li, C., … Sun, X. (2015). Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0649-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free