Introduction This study aimed to investigate amniotic fluid (AF) proteins that were differentially expressed between patients with cervical insufficiency (CI) and asymptomatic short cervix (SCX, ≤ 25 mm), and whether these proteins could be predictive of spontaneous preterm birth (SPTB) in these patients. Method This was a retrospective cohort study of 129 singleton pregnant women with CI (n = 80) or SCX (n = 49) at 17 to 26 weeks who underwent amniocentesis. An antibody microarray was used to perform comparative proteomic profiling of AF from matched CI (n = 20) and SCX (n = 20) pregnancies. In the total cohort, an ELISA validation study was performed for 15 candidate proteins of interest. Subgroup analyses of patients with CI and SCX were conducted to evaluate the association between the 15 proteins and SPTB at < 32 weeks of gestation. Results Eighty-six proteins showed intergroup differences. ELISA validation confirmed significantly higher levels of AF EN-RAGE, IL-8, lipocalin-2, MMP-9, S100A8/A9, thrombospondin-2, and TNFR2 in patients with CI than in those with SCX. Multivariable analysis showed that increased AF levels of EN-RAGE, S100A8/A9, and uPA were independently associated with SPTB at < 32 weeks in patients with CI; whereas in patients with SCX, high AF levels of APRIL, EN-RAGE, LBP, and TNFR2 were independently associated with SPTB at < 32 weeks. Conclusions Multiple AF proteins show altered expression in patients with CI compared with SCX controls. Moreover, several novel mediators involved in inflammation were identified as potential biomarkers for predicting SPTB after the diagnosis of CI and SCX. These results provide new insights into target-specific molecules for targeted therapies to prevent SPTB in patients with CI/SCX.
CITATION STYLE
Hong, S., Park, K. H., Lee, Y. E., Lee, J. E., Kim, Y. M., Joo, E., & Cho, I. (2022). Antibody microarray analysis of amniotic fluid proteomes in women with cervical insufficiency and short cervix, and their association with pregnancy latency length. PLoS ONE, 17(2 February). https://doi.org/10.1371/journal.pone.0263586
Mendeley helps you to discover research relevant for your work.