Can a Machine Learning–Enabled Numerical Model Help Extend Effective Forecast Range through Consistently Trained Subgrid-Scale Models?

  • Qu Y
  • Shi X
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of machine learning (ML) techniques enables data-driven parameterizations, which have been investigated in many recent studies. Some investigations suggest that a priori-trained ML models exhibit satisfying accuracy during training but poor performance when coupled to dynamical cores and tested. Here we use the evolution of the barotropic vorticity equation (BVE) with periodically reinforced shear instability as a prototype problem to develop and evaluate a model-consistent training strategy, which employs a numerical solver supporting automatic differentiation and includes the solver in the loss function for training ML-based subgrid-scale (SGS) turbulence models. This approach enables the interaction between the dynamical core and the ML-based parameterization during the model training phase. The BVE model was run at low, high, and ultrahigh (truth) resolutions. Our training dataset contains only a short period of coarsened high-resolution simulations. However, given initial conditions long after the training dataset time, the trained SGS model can still significantly increase the effective lead time of the BVE model running at the low resolution by up to 50% relative to the BVE simulation without an SGS model. We also tested using a covariance matrix to normalize the loss function and found it can notably boost the performance of the ML parameterization. The SGS model’s performance is further improved by conducting transfer learning using a limited number of discontinuous observations, increasing the forecast lead-time improvement to 73%. This study demonstrates a potential pathway to using machine learning to enhance the prediction skills of our climate and weather models.

Cite

CITATION STYLE

APA

Qu, Y., & Shi, X. (2022). Can a Machine Learning–Enabled Numerical Model Help Extend Effective Forecast Range through Consistently Trained Subgrid-Scale Models? Artificial Intelligence for the Earth Systems, 2(1). https://doi.org/10.1175/aies-d-22-0050.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free