Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS) /5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells

17Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

It was reported that amentoflavone (AF) had anti-tumor ability. Therefore, this study aimed to investigate the role of AF in endometrial cancer as well as to discuss its underlying mechanism. The viability, proliferation, and apoptosis of endometrial carcinoma cells (KLE) with AF administration were detected by methyl tetrazolium (MTT) assay, clone formation, and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assays. Thiobarbituric acid reactive substance (TBARS) production and Fe2+ level in AF-treated KLE cells were detected by TBARS assay and Iron assay. The expressions of proliferation- apoptosis-, ferroptosis-, and 5'AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling-related proteins in AF-treated KLE cells were detected by western blot analysis. Reactive oxygen species (ROS) expression in AF-treated KLE cells was determined by ROS assay kit. N-acetyl cysteine (NAC), which is an inhibitor of ROS, was used to confirm whether AF exerted its effects on KLE cells through ROS/AMPK/mTOR signaling. As a result, AF inhibited the viability and proliferation of KLE cells but promoted apoptosis and ferroptosis. The expressions of ROS and AMPK were increased, while mTOR expression was decreased in AF-treated KLE cells. NAC reversed the effects of AF on biological behaviors of KLE cells by inactivating ROS/AMPK/mTOR signaling. In conclusion, AF promoted ferroptosis by activating ROS/AMPK/mTOR to inhibit the viability and proliferation and promoted the apoptosis and ferroptosis of KLE cells.

Cite

CITATION STYLE

APA

Sun, Q., Zhen, P., Li, D., Liu, X., Ding, X., & Liu, H. (2022). Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS) /5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered, 13(5), 13269–13279. https://doi.org/10.1080/21655979.2022.2079256

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free