Quantifying and correcting residual azimuthal anisotropic moveout in image gathers using dynamic time warping

8Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We have developed a novel application of dynamic time warping (DTW) for correcting residual moveout in image gathers, enhancing seismic images, and determining azimuthal anisotropic orientation and relative intensity when moveout is caused by wave propagation through a medium possessing elliptical horizontally transverse isotropy (HTI). The method functions by first using DTW to determine the sequences of integer shifts that most closely match seismic traces within an image gather to its stack and then applying those shifts to flatten the gather. Flattening shifts are fitted to an ellipse to provide an approximation for the orientation and relative strength of elliptical HTI anisotropy. We evaluated the method on synthetic and 3D field data examples to show how it is able to (1) correct for residual azimuthal anisotropic moveout, (2) accurately recover high-frequency information and improve feature resolution in seismic images, and (3) determine the anisotropic orientation while providing a measure of relative strength of elliptic anisotropy. Although the method is not intended to replace anisotropic processing techniques for moveout correction, we find that it has the ability to inexpensively approximate the effects of such operations while providing a representation of the elliptic HTI anisotropy present within a volume.

Author supplied keywords

Cite

CITATION STYLE

APA

Decker, L., & Zhang, Q. (2020). Quantifying and correcting residual azimuthal anisotropic moveout in image gathers using dynamic time warping. Geophysics, 85(5), O71–O82. https://doi.org/10.1190/geo2019-0324.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free