Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells

64Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chondrogenic/osteogenic differentiation of a mesenchymal progenitor stimulated by BMP-13 (CDMP-2) was studied. C3H10T1/2 cells were transduced by an adenoviral construct containing BMP-13 or BMP-2. BMP-13 supported chondrogenesis but not terminal differentiation, whereas BMP-2 stimulated endochondral ossification. The studies show that BMP-13 may fail to support terminal chondrocyte differentiation. Introduction: Bone morphogenetic protein (BMP)-13 is a member of the transforming growth factor β (TGF-β) superfamily of growth factors. Although the biological functions of BMP-13 remain poorly understood, continued postnatal expression of BMP-13 in articular cartilage suggests that this protein may function in an autocrine/paracrine fashion to regulate growth and maintenance of articular cartilage. The purpose of this study was to elucidate the role of BMP-13 in chondrogenic differentiation. Materials and Methods: Replication-deficient adenoviruses carrying human BMP-13 (Adv-hBMP13), bacterial β-galactosidase (Adv-βgal), and human BMP-2 (Adv-hBMP2) were constructed. Murine mesenchymal progenitor cells (C3H10T1/2) were transduced with these vectors, and differentiation to the chondrogenic lineage was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), biochemical, and histological analyses. Results and Conclusions: Our findings revealed that hBMP-13 transduced cells differentiated into round cells that stained with Alcian blue. Analysis of gene expression in hBMP-13-transduced cells demonstrated presence of cartilage-specific markers, absence of hypertrophic chondrocyte specific markers, and upregulation of proteoglycan biosynthesis. In particular, hBMP-13-transduced cells had significantly less and delayed expression of alkaline phosphatase activity and calcium mineral accumulation than hBMP-2-transduced cells. Except for BMPR-IB/ ALK-6, expression of BMP receptors was identified constitutively in C3H10T1/2 cells and was not affected by the presence of either of the BMPs. In summary, hBMP-13, while stimulating chondrogenesis, failed to support differentiation to hypertrophic chondrocytes and endochondral ossification similar to hBMP-2. Thus, this may prove to be a useful strategy for cell-based regeneration of articular cartilage. © 2004 American Society for Bone and Mineral Research.

Cite

CITATION STYLE

APA

Nochi, H., Jin, H. S., Lou, J., Adkisson, H. D., Maloney, W. J., & Hruska, K. A. (2004). Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells. Journal of Bone and Mineral Research, 19(1), 111–122. https://doi.org/10.1359/jbmr.2004.19.1.111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free