These days, environmental pollution, notably water pollution, has increasingly caused severe human health problems. The major water pollutants are heavy metals. MnFe2O4/GO nanocomposite was prepared in the current work via in situ method and tested to remove lead ion Pb2+ and neutral red (NR) dye from water. The prepared nanocomposite was characterized using different techniques, including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectra, and vibrating sample magnetometer. The prepared nanocomposite showed high adsorption capacity toward Pb2+ and NR dye removal according to Langmuir fitting indicating the monolayer homogeneous adsorption of pollutants over the adsorbent surface and can be separated easily with an external magnet. The effect of different factors, including contact time, pH, initial concentration, and adsorbent dose on the adsorption, were also studied. The increased concentration of pollutants led to increased adsorption capacity from 63 to 625 mg/g for Pb2+ ions and from 20 to 90 mg/g for NR dye. The increased adsorbent dose led to increased removal efficiency from 39% to 98.8% and from 63% to 94% for Pb2+ and NR dye, respectively. The optimum pH for the adsorption of both pollutants was found to be 6.0. The reusability of MnFe2O4/GO nanocomposite was studied for up to five cycles. The nanocomposite can keep its efficiency even after the studied cycles. So, the prepared magnetic nanocomposite is a promising material for water treatment.
CITATION STYLE
Katubi, K. M. M., Alsaiari, N. S., Alzahrani, F. M., Siddeeg, S. M., & Tahoon, M. A. (2021). Synthesis of manganese ferrite/graphene oxide magnetic nanocomposite for pollutants removal from water. Processes, 9(4). https://doi.org/10.3390/pr9040589
Mendeley helps you to discover research relevant for your work.