Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor that is critical for hypoxic induction of a number of physiologically important genes. We present evidence that regulation of HIF-1 activity is primarily determined by the stability of the HIF-1α protein. Both HIF-1α and HIF-1β mRNAs were constitutively expressed in HeLa and Hep3B cells with no significant induction by hypoxia. However, the HIF-1α protein was barely detectable in normoxic cells, even when HIF-1α was overexpressed, but was highly induced in hypoxic cells, whereas HIF-1β protein levels remained constant, regardless of pO 2. Hypoxia-induced HIF-1 binding as well as the HIF-1α protein were rapidly and drastically decreased in vivo following an abrupt increase to normal oxygen tension. Moreover, short pre-exposure of cells to hydrogen peroxide selectively prevented hypoxia-induced HIF-1 binding via blocking accumulation of HIF-1α protein, whereas treatment of hypoxic cell extracts with H 2O 2 had no effect on HIF-1 binding. These observations suggest that an intact redox-dependent signaling pathway is required for destabilization of the HIF-1α protein. In hypoxic cell extracts, HIF-1 DNA binding was reversibly abolished by sulfhydryl oxidation. Furthermore, the addition of reduced thioredoxin to cell extracts enhanced HIF-1 DNA binding. Consistent with these results, overexpression of thioredoxin and Ref-1 significantly potentiated hypoxia-induced expression of a reporter construct containing the wild-type HIF-1 binding site. These experiments indicate that activation of HIF-1 involves redox-dependent stabilization of HIF-1α protein.
CITATION STYLE
Huang, L. E., Arany, Z., Livingston, D. M., & Franklin Bunn, H. (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. Journal of Biological Chemistry, 271(50), 32253–32259. https://doi.org/10.1074/jbc.271.50.32253
Mendeley helps you to discover research relevant for your work.