High Performance Computing (HPC) has recently been considerably improved, for instance quantum computing has been developed to achieve high performance computation in many areas, such as medical research, artificial intelligence, weather forecasting, etc. But it also poses a significant threat to cybersecurity, requiring changes to data encryption methods. Currently, the most widely used asymmetric algorithms are based on difficult mathematical problems, such as factoring large numbers, which can take thousands of years on today's most powerful supercomputers. The purpose of this paper is to dive into the field of cybersecurity and understand how modern practices will be affected by the advancements of quantum computing. In doing so, a fundamental understanding of modern-day computing, modern-day cybersecurity, and quantum computing will need to be established. This, in turn, will build the foundation to allow for a comprehensive analysis of how powerful quantum-based computing is in comparison to modern-day computing, and how this disruptive technology will ultimately change the field of cybersecurity on a global scale. In addition, current industry cybersecurity best practices will be presented to expose their projected vulnerabilities as well as what can be done in the immediate future to prepare for the ever-rapid advancements in computing. Finally, conclusions will be extrapolated on what is to come for future generations in the ongoing race between computing and cybersecurity.
CITATION STYLE
Nahed, M., & Alawneh, S. (2020). Cybersecurity in a Post-Quantum World: How Quantum Computing Will Forever Change the World of Cybersecurity. American Journal of Electrical and Computer Engineering, 4(2), 81. https://doi.org/10.11648/j.ajece.20200402.17
Mendeley helps you to discover research relevant for your work.