Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in brassica juncea sprouts

32Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Recent improvements in light-emitting diode (LED) technology afford an excellent opportunity to investigate the relationship between different light sources and plant metabolites. Accordingly, the goal of the present study was to determine the effect of different LED (white, blue, and red) treatments on the contents of glucosinolates (glucoiberin, gluconapin, sinigrin, gluconasturtiin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, glucobrassicin, and neoglucobrassicin) and phenolic compounds (4-hydroxybenzonate, catechin, chlorogenic acid, caffeate, gallate, sinapate, and quercetin) in Brassica juncea sprouts. The sprouts were grown in a growth chamber at 25◦ C under irradiation with white, blue, or red LED with a flux rate of 90 µmol·m−2·s−1 and a long-day photoperiod (16 h light/8 h dark cycle). Marked differences in desulfoglucosinolate contents were observed in response to treatment with different LEDs and different treatment durations. In addition, the highest total desulfoglucosinolate content was observed in response to white LED light treatment, followed by treatment with red LED light, and then blue LED light. Among the individual desulfoglucosinolates identified in the sprouts, sinigrin exhibited the highest content, which was observed after three weeks of white LED light treatment. The highest total phenolic contents were recorded after one week of white and blue LED light treatment, whereas blue LED irradiation increased the production of most of the phenolic compounds identified, including 4-hydroxybenzonate, gallate, sinapate, caffeate, quercetin, and chlorogenic acid. The production of phenolics decreased gradually with increasing duration of LED light treatment, whereas anthocyanin accumulation showed a progressive increase during the treatment. These findings indicate that white LED light is appropriate for glucosinolate accumulation, whereas blue LED light is effective in increasing the production of phenolic compounds in B. juncea sprouts.

Cite

CITATION STYLE

APA

Park, C. H., Park, Y. E., Yeo, H. J., Kim, J. K., & Park, S. U. (2020). Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in brassica juncea sprouts. Horticulturae, 6(4), 1–13. https://doi.org/10.3390/horticulturae6040077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free