Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host-parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1) which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845), and the other a truncated Ank-1 protein (MRI96570). Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570) mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845) caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host-parasite interactions, which could be the basis of future studies.
CITATION STYLE
Huang, H. M., Bauer, D. C., Lelliott, P. M., Dixon, M. W. A., Tilley, L., McMorran, B. J., … Burgio, G. (2017). Ankyrin-1 gene exhibits allelic heterogeneity in conferring protection against Malaria. G3: Genes, Genomes, Genetics, 7(9), 3133–3144. https://doi.org/10.1534/g3.117.300079
Mendeley helps you to discover research relevant for your work.