A Survey of Collaborative Filtering Techniques

  • Su X
  • Khoshgoftaar T
N/ACitations
Citations of this article
2.4kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

As one of the most successful approaches to building recommender systems, collaborative filtering ( CF ) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.

Cite

CITATION STYLE

APA

Su, X., & Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19. https://doi.org/10.1155/2009/421425

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free