In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organomineral sorption affects aquatic microbial metabolism, using organomineral particles containing a mix of 13C, 15N-labeled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralization. Organomineral complexation restricted C and N retention within biofilms and aggregates and also their mineralization. This reduced the efficiency with which biofilms mineralize C and N by 30% and 6%. By contrast, organominerals reduced the C and N mineralization efficiency of suspended aggregates by 41% and 93%. Our findings show how organomineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.
CITATION STYLE
Hunter, W. R., Niederdorfer, R., Gernand, A., Veuger, B., Prommer, J., Mooshammer, M., … Battin, T. J. (2016). Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems. Geophysical Research Letters, 43(4), 1582–1588. https://doi.org/10.1002/2016GL067719
Mendeley helps you to discover research relevant for your work.