Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology

79Citations
Citations of this article
119Readers
Mendeley users who have this article in their library.

Abstract

This study concerns the optimisation of green synthesis of manganese oxide nanoparticles (MnO NPs) with Dittrichia graveolens (L.) extract via response surface methodology (RSM). Central composite design was used to evaluate the effect of pH, time, and the extract to the metal ratio on the synthesised nanoparticles (NPs). Nine runs were designed to investigate the effect of each parameter while NPs were synthesised under different conditions. Considering the p-values (p-value < 0.05), it is indicated that the extract to the metal ratio was the most effective parameter. The synthesised NPs were characterised using UV-vis. Synthesis of the NPs by polyphenolic compounds of green reducing agent and their stabilisation by curcumin was confirmed by Fourier transform infrared spectra and the surface morphology of the spherical MnO NPs was studied by fieldemission scanning electron microscopy and transmission electron microscope techniques. The present researchers claimed the optimal condition as follows: Time = 56.7 min, pH = 7.2, and the extract to the metal ratio = 87.9 v/v. MnO NPs at optimum condition were then employed for degradation of industrial dyes and they showed high dye degradation activity against Rhodamine B and light green dye. The average size of the synthesised MnO NPs at optimal condition was claimed to be nearly 38 nm.

Cite

CITATION STYLE

APA

Souri, M., Hoseinpour, V., Shakeri, A., & Ghaemi, N. (2018). Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnology, 12(6), 822–827. https://doi.org/10.1049/iet-nbt.2017.0145

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free