Background: There is increasing evidence from animal and clinical studies that network hyperexcitability (NH) may be an important pathophysiological process and potential target for treatment in early Alzheimer's disease (AD). Measures of functional connectivity (FC) have been proposed as promising biomarkers for NH, but it is unknown which measure has the highest sensitivity for early-stage changes in the excitation/inhibition balance. Objective: We aim to test the performance of different FC measures in detecting NH at the earliest stage using a computational approach. Methods: We use a whole brain computational model of activity dependent degeneration to simulate progressive AD pathology and NH. We investigate if and at what stage four measures of FC (amplitude envelope correlation corrected [AECc], phase lag index [PLI], joint permutation entropy [JPE] and a new measure: phase lag time [PLT]) can detect early-stage AD pathophysiology. Results: The activity dependent degeneration model replicates spectral changes in line with clinical data and demonstrates increasing NH. Compared to relative theta power as a gold standard the AECc and PLI are shown to be less sensitive in detecting early-stage NH and AD-related neurophysiological abnormalities, while the JPE and the PLT show more sensitivity with excellent test characteristics. Conclusions: Novel FC measures, which are better in detecting rapid fluctuations in neural activity and connectivity, may be superior to well-known measures such as the AECc and PLI in detecting early phase neurophysiological abnormalities and in particular NH in AD. These markers could improve early diagnosis and treatment target identification.
CITATION STYLE
Stam, C. J., & de Haan, W. (2024). Network Hyperexcitability in Early-Stage Alzheimer’s Disease: Evaluation of Functional Connectivity Biomarkers in a Computational Disease Model. Journal of Alzheimer’s Disease : JAD, 99(4), 1333–1348. https://doi.org/10.3233/JAD-230825
Mendeley helps you to discover research relevant for your work.