Antimicrobial biopolymer formation from sodium alginate and algae extract using aminoglycosides

35Citations
Citations of this article
108Readers
Mendeley users who have this article in their library.

Abstract

Antimicrobial biopolymers provide a biodegradable, sustainable, safe, and cheap approach to drug delivery and wound dressing to control bacterial infection and improve wound healing respectively. Here, we report a one-step method of making antimicrobial alginate polymer from sodium alginate and aqueous extract of Wakame using antibiotic aminoglycosides. Thin layer chromatography of commercially available sodium alginate and Wakame extract showed similar oligosaccharide profiles. Screening of six aminoglycosides showed that kanamycin disulfate and neomycin sulfate produces the highest amount of biopolymer; however, kanamycin disulfate produces the most malleable and form fitting biopolymer. Image texture analysis of biopolymers showed similar quantification parameters for all the six aminoglycosides. Weight of alginate polymer as a function of aminoglycoside concentration follows a growth model of prion protein, consistent with the aggregating nature of both processes. Slow release of antibiotics and the resulting zone of inhibition against E. coli DH5α were observed by agar well diffusion assay. Inexpensive method of production and slow release of antibiotics will enable diverse applications of antimicrobial alginate biopolymer reported in this paper.

Cite

CITATION STYLE

APA

Kumar, L., Brice, J., Toberer, L., Klein-Seetharaman, J., Knauss, D., & Sarkar, S. K. (2019). Antimicrobial biopolymer formation from sodium alginate and algae extract using aminoglycosides. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0214411

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free