In vivo and ex vivo imaging were used to investigate the function of galectin-3 (Gal-3) during the process of leukocyte recruitment to the inflamed microcirculation. The cremasteric microcirculation of wild-type (C57BL/6), Gal-3−/−, and CX3CR1gfp/+ mice were assessed by intravital microscopy after PBS, IL-1β, TNF-α, or recombinant Gal-3 treatment. These cellular responses were investigated further using flow-chamber assays, confocal microscopy, flow cytometry, PCR analysis, and proteome array. We show that mechanisms mediating leukocyte slow rolling and emigration are impaired in Gal-3−/− mice, which could be because of impaired expression of cell adhesion molecules and an altered cell surface glycoproteome. Local (intrascrotal) administration of recombinant Gal-3 to wild-type mice resulted in a dose-dependent reduction in rolling velocity associated with increased numbers of adherent and emigrated leukocytes, ∼50% of which were Ly6G+ neutrophils. Intrascrotal administration of Gal-3 to CX3CR1gfp/+ mice confirmed that approximately equal numbers of monocytes are also recruited in response to this lectin. Exogenous Gal-3 treatment was accompanied by increased proinflammatory cytokines and chemokines within the local tissue. In conclusion, this study unveils novel biology for both exogenous and endogenous Gal-3 in promoting leukocyte recruitment during acute inflammation.
CITATION STYLE
Gittens, B. R., Bodkin, J. V., Nourshargh, S., Perretti, M., & Cooper, D. (2017). Galectin-3: A Positive Regulator of Leukocyte Recruitment in the Inflamed Microcirculation. The Journal of Immunology, 198(11), 4458–4469. https://doi.org/10.4049/jimmunol.1600709
Mendeley helps you to discover research relevant for your work.