A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau

29Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

A 33m ice core was retrieved from the Tanggula Mts, central Tibetan Plateau at 5743ma.s.l. in August 2005. Annual average δ18O values were determined for the upper 17m depth (14.6mw.eq.), representing the time series since the mid-1930s. Data are compared to previous results of an ice core from Mt. Geladaindong, 100 km to the northwest, for the period 1935-2003. During the time 1935-1960, δ18O values differed by 2-3‰between the two ice cores, with generally lower ratios preserved in the Tanggula 2005 core. Differences in interannual variability and overall average ratios between the two study locations highlight the spatially variable climate controls on ice core isotope ratios within the boundary of monsoon- and westerly-impacted regions of the central Tibetan Plateau. Average annual net accumulation was 261mmw.eq. for the period 1935-2004. The overall average δ18O value was -13.2‰ and exhibited a statistically significant increase from the 1935-1969 average (-13.7‰) to the 1970-2004 average (-12.6‰). Despite the observed increase in isotope ratios, isotopic temperature dependence was not evident, based on comparison with long-term data from meteorological stations to the north and southwest of the study location. Lack of correlation between average δ18O values and temperature is likely due to monsoon influence, which results in relatively greater isotopic depletion of moisture during the warm season. Evidence of monsoon impacts on precipitation in the central Tibetan Plateau has been previously documented, and statistically significant negative correlation (r=-0.37, p <0.01) between the annual average ice core δ18O values and North India monsoon rainfall was observed for the period 1935-2004. Although the δ18O data agree well with the monsoon rainfall amount, no significant correlation was observed between the core accumulation and the monsoon rainfall amount. Previous model and observational results suggest monsoon impact on δ18O in precipitation may extend beyond the immediate extent of heavy monsoon rainfall, reaching the central Tibetan Plateau. These results provide evidence that the δ18O variability at this study location may be sensitive to southern monsoon intensity. © Author(s) 2010.

Cite

CITATION STYLE

APA

Joswiak, D. R., Yao, T., Wu, G., Xu, B., & Zheng, W. (2010). A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau. Climate of the Past, 6(2), 219–227. https://doi.org/10.5194/cp-6-219-2010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free