Motor-cognitive functions required for driving in post-stroke individuals identified via machine-learning analysis

0Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: People who were previously hospitalised with stroke may have difficulty operating a motor vehicle, and their driving aptitude needs to be evaluated to prevent traffic accidents in today’s car-based society. Although the association between motor-cognitive functions and driving aptitude has been extensively studied, motor-cognitive functions required for driving have not been elucidated. Methods: In this paper, we propose a machine-learning algorithm that introduces sparse regularization to automatically select driving aptitude-related indices from 65 input indices obtained from 10 tests of motor-cognitive function conducted on 55 participants with stroke. Indices related to driving aptitude and their required tests can be identified based on the output probability of the presence or absence of driving aptitude to provide evidence for identifying subjects who must undergo the on-road driving test. We also analyzed the importance of the indices of motor-cognitive function tests in evaluating driving aptitude to further clarify the relationship between motor-cognitive function and driving aptitude. Results: The experimental results showed that the proposed method achieved predictive evaluation of the presence or absence of driving aptitude with high accuracy (area under curve 0.946) and identified a group of indices of motor-cognitive function tests that are strongly related to driving aptitude. Conclusions: The proposed method is able to effectively and accurately unravel driving-related motor-cognitive functions from a panoply of test results, allowing for autonomous evaluation of driving aptitude in post-stroke individuals. This has the potential to reduce the number of screening tests required and the corresponding clinical workload, further improving personal and public safety and the quality of life of individuals with stroke.

Cite

CITATION STYLE

APA

Tabuchi, G., Furui, A., Hama, S., Yanagawa, A., Shimonaga, K., Xu, Z., … Tsuji, T. (2023). Motor-cognitive functions required for driving in post-stroke individuals identified via machine-learning analysis. Journal of NeuroEngineering and Rehabilitation, 20(1). https://doi.org/10.1186/s12984-023-01263-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free