Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery

4Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sentinel-2 satellite imagery has been shown by studies to be capable of detecting and quantifying methane emissions from oil and gas production. However, current methods lack performance calibration with ground-truth testing. This study developed a multi-band-multi-pass-multi-comparison-date methane retrieval algorithm that enhances Sentinel-2 sensitivity to methane plumes. The method was calibrated using data from a large-scale controlled-release test in Ehrenberg, Arizona, in fall 2021, with three algorithm parameters tuned based on the true emission rates. Tuned parameters are the pixel-level concentration upper-bound threshold during extreme value removal, the number of comparison dates, and the pixel-level methane concentration percentage threshold when determining the spatial extent of a plume. We found that a low value of the upper-bound threshold during extreme value removal can result in false negatives. A high number of comparison dates helps enhance the algorithm sensitivity to the plumes in the target date, but values in excess of 12d are neither necessary nor computationally efficient. A high percentage threshold when determining the spatial extent of a plume helps enhance the quantification accuracy, but it may harm the yes/no detection accuracy. We found that there is a trade-off between quantification accuracy and detection accuracy. In a scenario with the highest quantification accuracy, we achieved the lowest quantification error and had zero false-positive detections; however, the algorithm missed three true plumes, which reduced the yes/no detection accuracy. In contrast, all of the true plumes were detected in the highest detection accuracy scenario, but the emission rate quantification had higher errors. We illustrated a two-step method that updates the emission rate estimates in an interim step, which improves quantification accuracy while keeping high yes/no detection accuracy. We also validated the algorithm's ability to detect true positives and true negatives in two application studies.

Cite

CITATION STYLE

APA

Zhang, Z., Sherwin, E. D., Varon, D. J., & Brandt, A. R. (2022). Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery. Atmospheric Measurement Techniques, 15(23), 7155–7169. https://doi.org/10.5194/amt-15-7155-2022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free