A contact mechanics based model for partially-closed randomly distributed surface microcracks and their effect on acoustic nonlinearity in Rayleigh surface waves

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This research investigates the modeling of randomly distributed surface-breaking microcracks and the dependency of higher harmonic generation in Rayleigh surface waves on microcrack density. The microcrack model is based on micromechanical considerations of rough surface contact. An effective stress-strain relationship is derived to describe the nonlinear behavior of a single microcrack and implemented into a finite-element model via a hyperelastic constitutive law. Finite-element simulations of nonlinear wave propagation in a solid with distributed surface microcracks are performed for a range of microcrack densities. The evolution of fundamental and second harmonic amplitudes along the propagation distance is studied and the acoustic nonlinearity parameter is calculated. The results show that the nonlinearity parameter increases with crack density. While, for small crack densities (dilute concentration of microcracks) a proportionality between crack density and acoustic nonlinearity is observed, this is not valid for higher crack densities, as the microcracks start to interact.

References Powered by Scopus

Modeling elastic wave propagation in waveguides with the finite element method

614Citations
N/AReaders
Get full text

Acoustic harmonic generation at unbonded interfaces and fatigue cracks

345Citations
N/AReaders
Get full text

Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves

270Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Generation mechanism of nonlinear Rayleigh surface waves for randomly distributed surface micro-cracks

9Citations
N/AReaders
Get full text

Nonlinear effects of micro-cracks on long-wavelength symmetric Lamb waves

7Citations
N/AReaders
Get full text

Excitation-dependent nonlinear behavior of distributed microcracks

3Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Oberhardt, T., Kim, J. Y., Qu, J., & Jacobs, L. J. (2016). A contact mechanics based model for partially-closed randomly distributed surface microcracks and their effect on acoustic nonlinearity in Rayleigh surface waves. In AIP Conference Proceedings (Vol. 1706). American Institute of Physics Inc. https://doi.org/10.1063/1.4940470

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

54%

Professor / Associate Prof. 3

23%

Researcher 3

23%

Readers' Discipline

Tooltip

Engineering 12

86%

Materials Science 2

14%

Save time finding and organizing research with Mendeley

Sign up for free