Dexterous manipulation depends on using the fingertips to stabilize unstable objects. The Strength-Dexterity paradigm consists of asking subjects to compress a slender and compliant spring prone to buckling. The maximal level of compression [requiring low fingertip forces <300 grams force (gf)] quantifies the neural control capability to dynamically regulate fingertip force vectors and motions for a dynamic manipulation task. We found that finger dexterity is significantly affected by age (p = 0.017) and gender (p = 0.021) in 147 healthy individuals (66F, 81M, 20-88 years). We then measured finger dexterity in 42 hands of patients following treatment for osteoarthritis of the base of the thumb (CMC OA, 33F, 65.8 ± 9.7 years), and 31 hands from patients being treated for Parkinson's disease (PD, 6F, 10M, 67.68 ± 8.5 years). Importantly, we found no differences in finger compression force among patients or controls. However, we did find stronger age-related declines in performance in the patients with PD (slope -2.7 gf/year, p = 0.002) than in those with CMC OA (slope -1.4 gf/year, p = 0.015), than in controls (slope -0.86 gf/year). In addition, the temporal variability of forces during spring compression shows clearly different dynamics in the clinical populations compared to the controls (p < 0.001). Lastly, we compared dexterity across extremities. We found stronger age (p = 0.005) and gender (p = 0.002) effects of leg compression force in 188 healthy subjects who compressed a larger spring with the foot of an isolated leg (73F, 115M, 14-92 years). In 81 subjects who performed the tests with all four limbs separately, we found finger and leg compression force to be significantly correlated (females ρ = 0.529, p = 0.004; males ρ = 0.403, p = 0.003; 28F, 53M, 20-85 years), but surprisingly found no differences between dominant and non-dominant limbs. These results have important clinical implications, and suggest the existence - and compel the investigation - of systemic versus limb-specific mechanisms for dexterity. © 2014 Lawrence, Fassola, Werner, Leclercq and Valero-Cuevas.
CITATION STYLE
Lawrence, E. L., Fassola, I., Werner, I., Leclercq, C., & Valero-Cuevas, F. J. (2014). Quantification of dexterity as the dynamical regulation of instabilities: Comparisons across gender, age, and disease. Frontiers in Neurology, 5 APR. https://doi.org/10.3389/fneur.2014.00053
Mendeley helps you to discover research relevant for your work.