Master equation modeling of the unimolecular decompositions of α-hydroxyethyl (CH3CHOH) and ethoxy (CH3CH 2O) radicals

18Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The unimolecular decomposition of two radical isomers of C 2H5O (CH3CH2O/ethoxy, CH 3CHOH/α-hydroxyethyl) are investigated by means of Rice-Ramsperger-Kassel-Marcus/master equation simulations in helium and nitrogen bath gases on an accurate one-dimensional potential energy surface. For ethoxy, simulations are carried out between temperatures of 406 and 1200 K and pressures of 0.001 and 100 atm. For CH3CHOH, simulations are carried out between temperatures of 800 and 1500 K and pressures of 0.001 and 100 atm. Results are compared with available experimental data, with good agreement. The dominant product of α-hydroxyethyl decomposition is CH3CHO + H, with C2H3OH + H and CH3 + CH2O, being minor channels. Rate coefficients are strongly dependent on temperature and pressure and are recommended with attendant uncertainty factor estimates. The relative roles of vinyl alcohol and acetaldehyde in the context of combustion chemistry are also discussed. © 2014 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Dames, E. E. (2014). Master equation modeling of the unimolecular decompositions of α-hydroxyethyl (CH3CHOH) and ethoxy (CH3CH 2O) radicals. International Journal of Chemical Kinetics, 46(3), 176–188. https://doi.org/10.1002/kin.20844

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free