Estratégias para a Combinação de Classificadores Binários em Soluções Multiclasses

  • Lorena A
  • De Carvalho A
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Several problems involve the classification of data into categories, also called classes. Given a dataset containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predictthe class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary problems. However, several problems requirethe discrimination of examples into more than two categories or classes. This paper surveys strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final classification.

Cite

CITATION STYLE

APA

Lorena, A. C., & De Carvalho, A. C. P. L. F. (2008). Estratégias para a Combinação de Classificadores Binários em Soluções Multiclasses. Revista de Informática Teórica e Aplicada, 15(2), 65–86. https://doi.org/10.22456/2175-2745.7016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free