NIK, a recently identified Nck-interacting kinase, acts upstream of the MEK kinase MEKK1 to activate the c-Jun N-terminal kinase JNK. We now show that NIK binds to and divergently activates the plasma membrane Na+-H + exchanger NHE1. In a genetic screen, NHE1 interacted with NIK at a site N-terminal (amino acids 407-502) to the Nck-binding domain, and this site is critical for its association with NHE1 in vivo. NIK also phosphorylates NHE1; however, the phosphorylation sites, which are distal to amino acid 638, are distinct from the NIK-binding site on NHE1 (amino acids 538-638). Expression of wild-type, but not a kinase-inactive, NIK in fibroblasts increased NHE1 hosphorylation and activity. The kinase domain of NIK, however, was not sufficient for this response in vivo. Full phosphorylation and activation of NHE1 required both the kinase and the NHE1-binding domains of NIK, suggesting that the NHE1-binding site functions as a targeting signal. The functional significance of an interaction between NIK and NHE1 was confirmed by the ability of a kinase-inactive NIK to selectively inhibit activation of NHE1 by platelet-derived growth factor but not by thrombin. Moreover, although NIK activates JNK through a mechanism dependent on MEKK1, it phosphorylated and activated NHE1 independently of MEKK1. These findings indicate that NIK acts downstream of platelet-derived growth factor receptors to phosphorylate and activate NHE1 divergently of its activation of JNK.
CITATION STYLE
Yan, W., Nehrke, K., Choi, J., & Barber, D. L. (2001). The Nck-interacting Kinase (NIK) Phosphorylates the Na+-H + Exchanger NHE1 and Regulates NHE1 Activation by Platelet-derived Growth Factor. Journal of Biological Chemistry, 276(33), 31349–31356. https://doi.org/10.1074/jbc.M102679200
Mendeley helps you to discover research relevant for your work.