This work presents a first-order analysis of the instability underlying viscous fingering in adverse viscosity-ratio water floods. It extends previous analyses of frontal instabilities, which were carried out with equations for parallel plate models, by including effects of the saturation transition zone observed behind the front in water floods in water wet systems. This zone tends to insulate incipient fingers from the high-mobility water; thus conditions for the onset of fingering differ from those in the parallel plate theory. Finite-difference solutions of the two-dimensional equations of displacement in porous media exhibited the predicted stability characteristics in six hypothetical field- and laboratory-scale floods in rectangular reservoirs. In contrast to results with parallel plate systems, this paper concludes that for water-wet reservoirs, laboratory models scaled by the usual criteria are also correctly scaled for frontal instability. Further, fingering in the systems studied can occur in any saturation range behind the front, and may occur at an intermediate saturation even though stability obtains both at the saturation corresponding to the Buckley-Leverett front and near residual oil saturation. Other points of contrast are that the likelihood of occurrence of fingering may not increase as flow rate or viscosity difference increases, but may be sensitive to changes in the relative permeability and capillary pressure functions.
CITATION STYLE
Rachford, H. H. (1964). Instability in Water Flooding Oil from Water -Wet Porous Media Containing Connate Water. Society of Petroleum Engineers Journal, 4(02), 133–148. https://doi.org/10.2118/684-pa
Mendeley helps you to discover research relevant for your work.