The computational complexity of ball permutations

7Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

We define several models of computation based on permuting distinguishable particles (which we call balls) and characterize their computational complexity. In the quantum setting, we use the representation theory of the symmetric group to find variants of this model which are intermediate between BPP and DQC1 (the class of problems solvable with one clean qubit) and between DQC1 and BQP. Furthermore, we consider a restricted version of this model based on an exactly solvable scattering problem of particles moving on a line. Despite the simplicity of this model from the perspective of mathematical physics, we show that if we allow intermediate destructive measurements and specific input states, then the model cannot be efficiently simulated classically up to multiplicative error unless the polynomial hierarchy collapses. Finally, we define a classical version of this model in which one can probabilistically permute balls. We find this yields a complexity class which is intermediate between L and BPP, and that a nondeterministic version of this model is NP-complete.

References Powered by Scopus

A scheme for efficient quantum computation with linear optics

5257Citations
N/AReaders
Get full text

Some exact results for the many-body problem in one dimension with repulsive delta-function interaction

1975Citations
N/AReaders
Get full text

Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models

1595Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Hyper-optimized tensor network contraction

124Citations
N/AReaders
Get full text

How many qubits are needed for quantum computational supremacy?

50Citations
N/AReaders
Get full text

Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates

34Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Aaronson, S., Bouland, A., Kuperberg, G., & Mehraban, S. (2017). The computational complexity of ball permutations. In Proceedings of the Annual ACM Symposium on Theory of Computing (Vol. Part F128415, pp. 317–327). Association for Computing Machinery. https://doi.org/10.1145/3055399.3055453

Readers over time

‘16‘17‘18‘19‘20‘21‘22‘23‘24‘2505101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 19

79%

Researcher 4

17%

Lecturer / Post doc 1

4%

Readers' Discipline

Tooltip

Computer Science 16

62%

Physics and Astronomy 8

31%

Mathematics 2

8%

Save time finding and organizing research with Mendeley

Sign up for free
0