Leptin has a major role in the regulation of food intake and energy homeostasis. In addition, leptin participates in many physiological functions including regulation of lipid metabolism. Bovine recombinant leptin protein was produced in E. coli cells in order to understand function of leptin in the regulation of lipid metabolism. The leptin expression vector was constructed in pGEX-4T-3 vector and transformed into E. coli BL21 cells. Expression of the GST-leptin fusion protein was induced with IPTG The fusion protein was purified using glutathione sepharose 4B batch method, and the recombinant leptin was eluted after thrombin protease digestion. The effect of leptin on glucose transport was examined in the differentiated adipocytes of 3T3-L1 cells. Leptin had no effect on basal and insulin-stimulated glucose transport in 3T3-L1 cells (p>0.05). Effect of recombinant leptin on glucose and acetate transport was examined in adipose tissues of Korean cattle (Hanwoo). Insulin stimulated glucose transport in both intramuscular and subcutaneous adipose tissues (p<0.05), but leptin did not affect glucose transport in both adipose tissues (p>0.05). Insulin stimulated acetate transport in bovine adipose tissues (p<0.05), but leptin did not affect acetate transport (p>0.05). Northern and RT-PCR analyses showed that mRNA levels of uncoupling protein-2 were increased by leptin treatment in 3T3-L1 cells without statistical difference (p>0.05). In conclusion, bovine recombinant leptin did not affect glucose and acetate transport in both 3T3-L1 adipocytes and bovine adipose tissues, while it stimulates UCP-2 mRNA expression in 3T3-L1 cells.
CITATION STYLE
Kim, K. S., & Baik, M. G. (2004). Production of leptin in E. coli and its effect on glucose and acetate transport and expression of uncoupling protein-2 gene in adipose tissues of Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences, 17(8), 1062–1068. https://doi.org/10.5713/ajas.2004.1062
Mendeley helps you to discover research relevant for your work.