Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells

55Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The tumor suppressive microRNA miR-34a is transcriptionally regulated by p53 and shown to inhibit breast cancer cell proliferation as well as being a marker of increased disease free survival. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin, extracted from the sweet wormwood plant, and artesunate, a semi-synthetic derivative of artemisinin, are phytochemicals with anti-tumorigenic properties however, little is known about the role of microRNAs in their mechanism of action. Human breast cancer cells expressing wild-type (MCF-7) or mutant p53 (T47D) were treated with a concentration range and time course of each phytochemical under conditions of cell cycle arrest as detected by flow cytometry to examine the potential connection between miR-34a expression and their anti-proliferative responses. Real-time PCR and western blot analysis of extracted RNA and total protein revealed artemsinin and artesunate increased miR-34a expression in a dose-dependent manner correlating with down-regulation of the miR-34a target gene, CDK4. I3C stimulation of miR-34a expression required functional p53, whereas, both artemisinin and artesunate up-regulated miR-34a expression regardless of p53 mutational status or in the presence of dominant negative p53. Phytochemical treatments inhibited the luciferase activity of a construct containing the wild-type 3′UTR of CDK4, but not those with a mutated miR-34a binding site, whereas, transfection of miR-34a inhibitors ablated the phytochemical mediated down-regulation of CDK4 and induction of cell cycle arrest. Our results suggest that miR-34a is an essential component of the anti-proliferative activities of I3C, artemisinin, and artesunate and demonstrate that both wild-type p53 dependent and independent pathways are responsible for miR-34a induction.

Cite

CITATION STYLE

APA

Hargraves, K. G., He, L., & Firestone, G. L. (2016). Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Molecular Carcinogenesis, 55(5), 486–498. https://doi.org/10.1002/mc.22296

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free