3-D image reconstruction with elemental images printed on paper

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

There has been much interest in 3-D visualization [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Among various approaches, lenticular technique has been a promising candidate in most 3-D display industries since it can provide high quality 3-D effect with easy setup. However, the lenticular approach has an inherent drawback because it cannot provide autostereoscopic images without using a supplementary tool such as polarizing glasses. Likewise, despite being able to provide an autostereoscopic 3-D image, holography also has many constraints which make it impractical when used in commercial 3-D display systems. The rainbow hologram, invented by S. Benton [1], has been positioning its practicability in the 3-D display industry due to the benefit of 3-D image reconstruction capability based on white light illumination. However, the rainbow hologram also sacrifices one-dimensional parallax information for practicability. The ability to view holographic images in white light was a vital step toward making holography suitable for display applications. Recently, progress in spatial light modulator (SLM) and dramatically enhancing computer technology has been motivating the use of Integral Imaging (II) technique for full parallax 3-D TV and visualization. The basic idea of II was originated from Lippmann in 1908 [2]. However, II was not one of the major approaches in 3-D visualization until recent outstanding advanced studies examined the enormously enhanced practicability of the II based 3-D display [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. II has inherent benefits and distinct characteristics compared with the lenticular technique in terms that it captures full parallax of a 3-D object at the imaging step by use of a lenslet array and reconstructs 3-D images with full parallax capability simply by employing another lenslet array. II can provide a real volumetric display technique that forms 3-D images in free space. And the scope of II has been extended to the object recognition and the depth estimation [29]. One advantage of II for 3-D image recognition lies in its compactness of multiple perspective imaging. Multi-view scenes of 3-D objects are recorded by a single shot without using multiple sensors or changing the position of the sensor. For dynamic 3-D full parallax 3-D visualization, we need the whole set of imaging and display tools which include CCD and SLM. However, in some specific display applications that require static 3-D picture based advertisement, entertainment and information capability, we need a simple and compact approach. In this chapter, we propose a novel full parallax static 3-D display technique based on elemental images printed on paper. We experimentally show that the proposed printed II based 3-D display can provide the capability of full parallax with moderate resolution. The proposed approach could potentially be applied in practical use within various 3-D visualization industries. © 2009 Springer-Verlag New York.

Cite

CITATION STYLE

APA

Kim, D., & Javidi, B. (2009). 3-D image reconstruction with elemental images printed on paper. In Three-Dimensional Imaging, Visualization, and Display (pp. 99–106). Springer US. https://doi.org/10.1007/978-0-387-79335-1_6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free