Supervised machine learning aided behavior classification in pigeons

3Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Manual behavioral observations have been applied in both environment and laboratory experiments in order to analyze and quantify animal movement and behavior. Although these observations contributed tremendously to ecological and neuroscientific disciplines, there have been challenges and disadvantages following in their footsteps. They are not only time-consuming, labor-intensive, and error-prone but they can also be subjective, which induces further difficulties in reproducing the results. Therefore, there is an ongoing endeavor towards automated behavioral analysis, which has also paved the way for open-source software approaches. Even though these approaches theoretically can be applied to different animal groups, the current applications are mostly focused on mammals, especially rodents. However, extending those applications to other vertebrates, such as birds, is advisable not only for extending species-specific knowledge but also for contributing to the larger evolutionary picture and the role of behavior within. Here we present an open-source software package as a possible initiation of bird behavior classification. It can analyze pose-estimation data generated by established deep-learning-based pose-estimation tools such as DeepLabCut for building supervised machine learning predictive classifiers for pigeon behaviors, which can be broadened to support other bird species as well. We show that by training different machine learning and deep learning architectures using multivariate time series data as input, an F1 score of 0.874 can be achieved for a set of seven distinct behaviors. In addition, an algorithm for further tuning the bias of the predictions towards either precision or recall is introduced, which allows tailoring the classifier to specific needs.

Cite

CITATION STYLE

APA

Wittek, N., Wittek, K., Keibel, C., & Güntürkün, O. (2023). Supervised machine learning aided behavior classification in pigeons. Behavior Research Methods, 55(4), 1624–1640. https://doi.org/10.3758/s13428-022-01881-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free