Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2

99Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wnt11 signals through both canonical (β-catenin) and non-canonical pathways and is up-regulated during osteoblast differentiation and fracture healing. In these studies, we evaluated the role of Wnt11 during osteoblastogenesis. Wnt11 overexpression in MC3T3E1 pre-osteoblasts increases β-catenin accumulation and promotes bone morphogenetic protein (BMP)-induced expression of alkaline phosphatase and mineralization. Wnt11 dramatically increases expression of the osteoblast-associated genes Dmp1 (dentin matrix protein 1), Phex (phosphate-regulating endopeptidase homolog), and Bsp (bone sialoprotein). Wnt11 also increases expression of Rspo2 (R-spondin 2), a secreted factor known to enhance Wnt signaling. Overexpression of Rspo2 is sufficient for increasing Dmp1, Phex, and Bsp expression and promotes bone morphogenetic protein-induced mineralization. Knockdown of Rspo2 abrogates Wnt11-mediated osteoblast maturation. Antagonism of T-cell factor (Tcf)/β-catenin signaling with dominant negative Tcf blocks Wnt11-mediated expression of Dmp1, Phex, and Rspo2 and decreases mineralization. However, dominant negative Tcf fails to block the osteogenic effects of Rspo2 overexpression. These studies show that Wnt11 signals through β-catenin, activating Rspo2 expression, which is then required for Wnt11-mediated osteoblast maturation. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Friedman, M. S., Oyserman, S. M., & Hankenson, K. D. (2009). Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. Journal of Biological Chemistry, 284(21), 14117–14125. https://doi.org/10.1074/jbc.M808337200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free