UV photostability of three 2-aminoazoles with key roles in prebiotic chemistry on the early earth

27Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Three related molecules in the 2-aminoazole family are potentially important for prebiotic chemistry: 2-aminooxazole, 2-aminoimidazole, and 2-aminothiazole, which can provide critical functions as an intermediate in nucleotide synthesis, a nucleotide activating agent, and a selective agent, respectively. Here, we examine the wavelength-dependent photodegradation of these three molecules under mid-range UV light (210-290 nm). We then assess the implications of the observed degradation rates for the proposed prebiotic roles of these compounds. We find that all three 2-aminoazoles degrade under UV light, with half lives ranging from ≈7-100 hours under a solar-like spectrum. 2-Aminooxazole is the least photostable, while 2-aminoimidazole is the most photostable. The relative photostabilities are consistent with the order in which these molecules would be used prebiotically: AO is used first to build nucleotides and AI is used last to activate them.

Cite

CITATION STYLE

APA

Todd, Z. R., Szabla, R., Szostak, J. W., & Sasselov, D. D. (2019). UV photostability of three 2-aminoazoles with key roles in prebiotic chemistry on the early earth. Chemical Communications, 55(70), 10388–10391. https://doi.org/10.1039/c9cc05265h

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free