An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: Tectonic and global climatic correlates

154Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We reconstruct long-term vegetation/paleoclimatic trends, spanning the last 18 million years, in Alaska. Yukon and far western Northwest Territories. Twenty-one average percentage spectra for pollen and spores are assembled from eight surface/subsurface sections. The sections are dated independently or by correlation. Pollen and spore ratios indicate the direction of change in vegetation and climatic parameters growing season temperature (T(est)), tree canopy density (C(est)) and paludification at study sites (P(est)). A global warm peak ca. 15 Ma is shown by the abundance of thermophilous taxa, including Fagus and Quercus. A temperature decline immediately following 15 Ma parallels climatic reconstructions based on marine oxygen isotopes. Subsequent declines correlate to the Messinian event and the onset of late Pliocene Pleistocene glaciation. After 7 Ma herbs and shrubs become more important elements of the palynological assemblages, suggesting a more continental, colder/drier climate. However, a late Pliocene warm interval is evident. Vegetation/climatic changes during the early to late Miocene show synchrony with, and are most economically attributable to, global events. After 7 Ma, vegetation/climate change is attributed primarily to latest Miocene-to-Pleistocene uplift of the Alaska Range and St. Elias Mrs. The continuing influence of global climatic patterns is shown in the late Pliocene warm interval, despite uplift to the south. The opening of the Bering Strait ca. 3 Ma may have moderated the climate in the study area.

Cite

CITATION STYLE

APA

White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Liu, G., Jetté, H., & Schweger, C. E. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: Tectonic and global climatic correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1–4), 293–306. https://doi.org/10.1016/S0031-0182(96)00146-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free