Intra-fractional dosimetric analysis of image-guided intracavitary brachytherapy of cervical cancer

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: To assess the intra-fractional dosimetric variations of image-guided brachytherapy of cervical cancer. Methods: A total of 38 fractions (9 patients) undergoing brachytherapy for cervical cancer underwent a CT scanning for treatment planning (planning CT) and a Cone-beam CT (CBCT) scanning immediately prior to delivery (pre-delivery CBCT). The variations of volumes as well as the dosimetric impact from treatment planning to delivery (intra-application) were evaluated. The dose volume histogram parameters including volume, D90 of high-risk clinical target volume (HRCTV) and D2cc of organs at risk (OARs) were recorded. Results: The relative differences (mean ± 1SD) of the volume and D90 HRCTV across the two scans were − 2.0 ± 3.3% and − 1.2 ± 4.5%, respectively. The variations of D2cc for bladder, rectum, sigmoid and small intestine are − 0.6 ± 17.1%, 9.3 ± 14.6%, 7.2% ± 20.5% and 1.5 ± 12.6%, respectively. Most of them are statistically nonsignificant except the D2cc for rectum, which showed a significant increase (P = 0.001). Using 5% and 10% uncertainty of physical dose for HRCTV at a 6 Gy × 5 high-dose-rate schedule, the possibility of total equivalent doses in 2 Gy fractions (EQD2) lower than 85 Gy is close to 0% and 3%, respectively. Performing similar simulation at 15% and 20% uncertainty of a 4 Gy physical dose for OARs, the possibility of total EQD2 dose exceeding 75 Gy is about 70%. Less than 1% of the total EQD2 of OARs would exceed 80 Gy. Conclusions: Average intra-fractional dosimetric variation of HRCTV was small in an interval of less than 1 h, and the possibility of total EQD2 exceeding 85 Gy is higher than 97%. The intra-fractional dosimetric variations of OARs might result in an overdose for OARs in a single fraction or the whole treatment. It is necessary to detect unfavorable anatomical changes by re-imaging and take interventions to minimize applied doses and reduce the risk of complications.

Cite

CITATION STYLE

APA

Yan, J., Zhu, J., Chen, K., Yu, L., & Zhang, F. (2021). Intra-fractional dosimetric analysis of image-guided intracavitary brachytherapy of cervical cancer. Radiation Oncology, 16(1). https://doi.org/10.1186/s13014-021-01870-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free