The Golgi Ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity

51Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi ministacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis. This article has an associated First Person interview with the first author of the paper.

Cite

CITATION STYLE

APA

Gosavi, P., Houghton, F. J., McMillan, P. J., Hanssen, E., & Gleeson, P. A. (2018). The Golgi Ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. Journal of Cell Science, 131(3). https://doi.org/10.1242/JCS.211987

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free