Design, Synthesis, and Evaluation of (2-Aminocyclopropyl)phenyl Derivatives as Novel Positron Emission Tomography Imaging Agents for Lysine-Specific Demethylase 1 in the Brain

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dysregulation of histone H3 lysine 4 (H3K4) methylation is implicated in the pathogenesis of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) determines the methylation status of H3K4 through flavin adenine dinucleotide (FAD)-mediated histone demethylation. Therefore, LSD1 inhibition in the brain can be a novel therapeutic option for treating these disorders. Positron emission tomography (PET) imaging of LSD1 allows for investigating LSD1 expression levels under normal and disease conditions and validating target engagement of therapeutic LSD1 inhibitors. This study designed and synthesized (2-aminocyclopropyl)phenyl derivatives with irreversible binding to LSD1 as PET imaging agents for LSD1 in the brain. We optimized lipophilicity of the lead compound to minimize the risk of nonspecific binding and identified 1e with high selectivity over monoamine oxidase A and B, which are a family of FAD-dependent enzymes homologous to LSD1. PET imaging in a monkey showed a high uptake of [18F]1e to regions enriched with LSD1, indicating its specific binding to LSD1.

Cite

CITATION STYLE

APA

Hattori, Y., Matsuda, S., Baba, R., Matsumiya, K., Iwasaki, S., Constantinescu, C. C., … Koike, T. (2021). Design, Synthesis, and Evaluation of (2-Aminocyclopropyl)phenyl Derivatives as Novel Positron Emission Tomography Imaging Agents for Lysine-Specific Demethylase 1 in the Brain. Journal of Medicinal Chemistry, 64(7), 3780–3793. https://doi.org/10.1021/acs.jmedchem.0c01937

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free